Patrick Kelley 8fd444092b initial
2025-05-07 15:35:15 -04:00

558 lines
17 KiB
C++

//
// Implementation of N4562 std::experimental::any (merged into C++17) for C++11 compilers.
//
// See also:
// + http://en.cppreference.com/w/cpp/any
// + http://en.cppreference.com/w/cpp/experimental/any
// + http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html#any
// + https://cplusplus.github.io/LWG/lwg-active.html#2509
//
//
// Copyright (c) 2016 Denilson das Mercês Amorim
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef LINB_ANY_HPP
#define LINB_ANY_HPP
#pragma once
#include <typeinfo>
#include <type_traits>
#include <stdexcept>
#include <utility>
#include <new>
#if defined(PARTICLE)
#if !defined(__cpp_exceptions) && !defined(ANY_IMPL_NO_EXCEPTIONS) && !defined(ANY_IMPL_EXCEPTIONS)
# define ANY_IMPL_NO_EXCEPTIONS
# endif
#else
// you can opt-out of exceptions by definining ANY_IMPL_NO_EXCEPTIONS,
// but you must ensure not to cast badly when passing an `any' object to any_cast<T>(any)
#endif
#if defined(PARTICLE)
#if !defined(__cpp_rtti) && !defined(ANY_IMPL_NO_RTTI) && !defined(ANY_IMPL_RTTI)
# define ANY_IMPL_NO_RTTI
# endif
#else
// you can opt-out of RTTI by defining ANY_IMPL_NO_RTTI,
// in order to disable functions working with the typeid of a type
#endif
namespace linb
{
template<typename T>
struct in_place_type_t
{
constexpr explicit in_place_type_t() noexcept = default;
};
#if defined (__cpp_variable_templates) || defined(_MSC_VER)
template<typename T>
constexpr in_place_type_t<T> in_place_type{};
#endif
class bad_any_cast : public std::bad_cast
{
public:
const char* what() const noexcept override
{
return "bad any cast";
}
};
class any final
{
public:
/// Constructs an object of type any with an empty state.
any() noexcept :
vtable(nullptr)
{
}
/// Constructs an object of type any with an equivalent state as other.
any(const any& rhs) :
vtable(rhs.vtable)
{
if(!rhs.empty())
{
rhs.vtable->copy(rhs.storage, this->storage);
}
}
/// Constructs an object of type any with a state equivalent to the original state of other.
/// rhs is left in a valid but otherwise unspecified state.
any(any&& rhs) noexcept :
vtable(rhs.vtable)
{
if(!rhs.empty())
{
rhs.vtable->move(rhs.storage, this->storage);
rhs.vtable = nullptr;
}
}
/// Same effect as this->clear().
~any()
{
this->clear();
}
/// Constructs an object of type any that contains an object of type T direct-initialized with std::forward<ValueType>(value).
///
/// T shall satisfy the CopyConstructible requirements, otherwise the program is ill-formed.
/// This is because an `any` may be copy constructed into another `any` at any time, so a copy should always be allowed.
template<typename ValueType, typename = typename std::enable_if<!std::is_same<typename std::decay<ValueType>::type, any>::value>::type>
any(ValueType&& value)
{
static_assert(std::is_copy_constructible<typename std::decay<ValueType>::type>::value,
"T shall satisfy the CopyConstructible requirements.");
this->construct(std::forward<ValueType>(value));
}
template <typename ValueType, typename... Args>
explicit any(in_place_type_t<ValueType>, Args&&... args)
{
this->emplace_construct<ValueType>(std::forward<Args>(args)...);
}
template <typename ValueType, typename U, typename... Args>
explicit any(in_place_type_t<ValueType>, std::initializer_list<U> il, Args&&... args)
{
this->emplace_construct<ValueType>(il, std::forward<Args>(args)...);
}
/// Has the same effect as any(rhs).swap(*this). No effects if an exception is thrown.
any& operator=(const any& rhs)
{
any(rhs).swap(*this);
return *this;
}
/// Has the same effect as any(std::move(rhs)).swap(*this).
///
/// The state of *this is equivalent to the original state of rhs and rhs is left in a valid
/// but otherwise unspecified state.
any& operator=(any&& rhs) noexcept
{
std::move(rhs).swap(*this);
return *this;
}
/// Has the same effect as any(std::forward<ValueType>(value)).swap(*this). No effect if a exception is thrown.
///
/// T shall satisfy the CopyConstructible requirements, otherwise the program is ill-formed.
/// This is because an `any` may be copy constructed into another `any` at any time, so a copy should always be allowed.
template<typename ValueType, typename = typename std::enable_if<!std::is_same<typename std::decay<ValueType>::type, any>::value>::type>
any& operator=(ValueType&& value)
{
static_assert(std::is_copy_constructible<typename std::decay<ValueType>::type>::value,
"T shall satisfy the CopyConstructible requirements.");
any(std::forward<ValueType>(value)).swap(*this);
return *this;
}
/// If not empty, destroys the contained object.
void clear() noexcept
{
if(!empty())
{
this->vtable->destroy(storage);
this->vtable = nullptr;
}
}
/// Returns true if *this has no contained object, otherwise false.
bool empty() const noexcept
{
return this->vtable == nullptr;
}
#ifndef ANY_IMPL_NO_RTTI
/// If *this has a contained object of type T, typeid(T); otherwise typeid(void).
const std::type_info& type() const noexcept
{
return empty()? typeid(void) : this->vtable->type();
}
#endif
/// Exchange the states of *this and rhs.
void swap(any& rhs) noexcept
{
if(this->vtable != rhs.vtable)
{
any tmp(std::move(rhs));
// move from *this to rhs.
rhs.vtable = this->vtable;
if(this->vtable != nullptr)
{
this->vtable->move(this->storage, rhs.storage);
//this->vtable = nullptr; -- unneeded, see below
}
// move from tmp (previously rhs) to *this.
this->vtable = tmp.vtable;
if(tmp.vtable != nullptr)
{
tmp.vtable->move(tmp.storage, this->storage);
tmp.vtable = nullptr;
}
}
else // same types
{
if(this->vtable != nullptr)
this->vtable->swap(this->storage, rhs.storage);
}
}
private: // Storage and Virtual Method Table
union storage_union
{
using stack_storage_t = typename std::aligned_storage<2 * sizeof(void*), std::alignment_of<void*>::value>::type;
void* dynamic;
stack_storage_t stack; // 2 words for e.g. shared_ptr
};
/// Base VTable specification.
struct vtable_type
{
// Note: The caller is responsible for doing .vtable = nullptr after destructful operations
// such as destroy() and/or move().
#ifndef ANY_IMPL_NO_RTTI
/// The type of the object this vtable is for.
const std::type_info& (*type)() noexcept;
#endif
/// Destroys the object in the union.
/// The state of the union after this call is unspecified, caller must ensure not to use src anymore.
void(*destroy)(storage_union&) noexcept;
/// Copies the **inner** content of the src union into the yet unitialized dest union.
/// As such, both inner objects will have the same state, but on separate memory locations.
void(*copy)(const storage_union& src, storage_union& dest);
/// Moves the storage from src to the yet unitialized dest union.
/// The state of src after this call is unspecified, caller must ensure not to use src anymore.
void(*move)(storage_union& src, storage_union& dest) noexcept;
/// Exchanges the storage between lhs and rhs.
void(*swap)(storage_union& lhs, storage_union& rhs) noexcept;
};
/// VTable for dynamically allocated storage.
template<typename T>
struct vtable_dynamic
{
#ifndef ANY_IMPL_NO_RTTI
static const std::type_info& type() noexcept
{
return typeid(T);
}
#endif
static void destroy(storage_union& storage) noexcept
{
//assert(reinterpret_cast<T*>(storage.dynamic));
delete reinterpret_cast<T*>(storage.dynamic);
}
static void copy(const storage_union& src, storage_union& dest)
{
dest.dynamic = new T(*reinterpret_cast<const T*>(src.dynamic));
}
static void move(storage_union& src, storage_union& dest) noexcept
{
dest.dynamic = src.dynamic;
src.dynamic = nullptr;
}
static void swap(storage_union& lhs, storage_union& rhs) noexcept
{
// just exchange the storage pointers.
std::swap(lhs.dynamic, rhs.dynamic);
}
};
/// VTable for stack allocated storage.
template<typename T>
struct vtable_stack
{
#ifndef ANY_IMPL_NO_RTTI
static const std::type_info& type() noexcept
{
return typeid(T);
}
#endif
static void destroy(storage_union& storage) noexcept
{
reinterpret_cast<T*>(&storage.stack)->~T();
}
static void copy(const storage_union& src, storage_union& dest)
{
new (&dest.stack) T(reinterpret_cast<const T&>(src.stack));
}
static void move(storage_union& src, storage_union& dest) noexcept
{
// one of the conditions for using vtable_stack is a nothrow move constructor,
// so this move constructor will never throw a exception.
new (&dest.stack) T(std::move(reinterpret_cast<T&>(src.stack)));
destroy(src);
}
static void swap(storage_union& lhs, storage_union& rhs) noexcept
{
storage_union tmp_storage;
move(rhs, tmp_storage);
move(lhs, rhs);
move(tmp_storage, lhs);
}
};
/// Whether the type T must be dynamically allocated or can be stored on the stack.
template<typename T>
struct requires_allocation :
std::integral_constant<bool,
!(std::is_nothrow_move_constructible<T>::value // N4562 §6.3/3 [any.class]
&& sizeof(T) <= sizeof(storage_union::stack)
&& std::alignment_of<T>::value <= std::alignment_of<storage_union::stack_storage_t>::value)>
{};
/// Returns the pointer to the vtable of the type T.
template<typename T>
static vtable_type* vtable_for_type()
{
using VTableType = typename std::conditional<requires_allocation<T>::value, vtable_dynamic<T>, vtable_stack<T>>::type;
static vtable_type table = {
#ifndef ANY_IMPL_NO_RTTI
VTableType::type,
#endif
VTableType::destroy,
VTableType::copy, VTableType::move,
VTableType::swap,
};
return &table;
}
protected:
template<typename T>
friend const T* any_cast(const any* operand) noexcept;
template<typename T>
friend T* any_cast(any* operand) noexcept;
#ifndef ANY_IMPL_NO_RTTI
/// Same effect as is_same(this->type(), t);
bool is_typed(const std::type_info& t) const
{
return is_same(this->type(), t);
}
#endif
#ifndef ANY_IMPL_NO_RTTI
/// Checks if two type infos are the same.
///
/// If ANY_IMPL_FAST_TYPE_INFO_COMPARE is defined, checks only the address of the
/// type infos, otherwise does an actual comparision. Checking addresses is
/// only a valid approach when there's no interaction with outside sources
/// (other shared libraries and such).
static bool is_same(const std::type_info& a, const std::type_info& b)
{
#ifdef ANY_IMPL_FAST_TYPE_INFO_COMPARE
return &a == &b;
#else
return a == b;
#endif
}
#endif
/// Casts (with no type_info checks) the storage pointer as const T*.
template<typename T>
const T* cast() const noexcept
{
return requires_allocation<typename std::decay<T>::type>::value?
reinterpret_cast<const T*>(storage.dynamic) :
reinterpret_cast<const T*>(&storage.stack);
}
/// Casts (with no type_info checks) the storage pointer as T*.
template<typename T>
T* cast() noexcept
{
return requires_allocation<typename std::decay<T>::type>::value?
reinterpret_cast<T*>(storage.dynamic) :
reinterpret_cast<T*>(&storage.stack);
}
private:
storage_union storage; // on offset(0) so no padding for align
vtable_type* vtable;
template <typename T, typename... Args>
typename std::enable_if<requires_allocation<T>::value>::type do_emplace(Args&&... args)
{
storage.dynamic = new T(std::forward<Args>(args)...);
}
template <typename T, typename... Args>
typename std::enable_if<!requires_allocation<T>::value>::type do_emplace(Args&&... args)
{
new (&storage.stack) T(std::forward<Args>(args)...);
}
template <typename ValueType, typename... Args>
void emplace_construct(Args&&... args)
{
using T = typename std::decay<ValueType>::type;
this->vtable = vtable_for_type<T>();
do_emplace<T>(std::forward<Args>(args)...);
}
template<typename ValueType, typename T>
typename std::enable_if<requires_allocation<T>::value>::type
do_construct(ValueType&& value)
{
storage.dynamic = new T(std::forward<ValueType>(value));
}
template<typename ValueType, typename T>
typename std::enable_if<!requires_allocation<T>::value>::type
do_construct(ValueType&& value)
{
new (&storage.stack) T(std::forward<ValueType>(value));
}
/// Chooses between stack and dynamic allocation for the type decay_t<ValueType>,
/// assigns the correct vtable, and constructs the object on our storage.
template<typename ValueType>
void construct(ValueType&& value)
{
using T = typename std::decay<ValueType>::type;
this->vtable = vtable_for_type<T>();
do_construct<ValueType,T>(std::forward<ValueType>(value));
}
};
namespace detail
{
template<typename ValueType>
inline ValueType any_cast_move_if_true(typename std::remove_reference<ValueType>::type* p, std::true_type)
{
return std::move(*p);
}
template<typename ValueType>
inline ValueType any_cast_move_if_true(typename std::remove_reference<ValueType>::type* p, std::false_type)
{
return *p;
}
}
/// Performs *any_cast<add_const_t<remove_reference_t<ValueType>>>(&operand), or throws bad_any_cast on failure.
template<typename ValueType>
inline ValueType any_cast(const any& operand)
{
auto p = any_cast<typename std::add_const<typename std::remove_reference<ValueType>::type>::type>(&operand);
#ifndef ANY_IMPL_NO_EXCEPTIONS
if(p == nullptr) throw bad_any_cast();
#endif
return *p;
}
/// Performs *any_cast<remove_reference_t<ValueType>>(&operand), or throws bad_any_cast on failure.
template<typename ValueType>
inline ValueType any_cast(any& operand)
{
auto p = any_cast<typename std::remove_reference<ValueType>::type>(&operand);
#ifndef ANY_IMPL_NO_EXCEPTIONS
if(p == nullptr) throw bad_any_cast();
#endif
return *p;
}
///
/// If ValueType is MoveConstructible and isn't a lvalue reference, performs
/// std::move(*any_cast<remove_reference_t<ValueType>>(&operand)), otherwise
/// *any_cast<remove_reference_t<ValueType>>(&operand). Throws bad_any_cast on failure.
///
template<typename ValueType>
inline ValueType any_cast(any&& operand)
{
using can_move = std::integral_constant<bool,
std::is_move_constructible<ValueType>::value
&& !std::is_lvalue_reference<ValueType>::value>;
auto p = any_cast<typename std::remove_reference<ValueType>::type>(&operand);
#ifndef ANY_IMPL_NO_EXCEPTIONS
if(p == nullptr) throw bad_any_cast();
#endif
return detail::any_cast_move_if_true<ValueType>(p, can_move());
}
/// If operand != nullptr && operand->type() == typeid(ValueType), a pointer to the object
/// contained by operand, otherwise nullptr.
template<typename ValueType>
inline const ValueType* any_cast(const any* operand) noexcept
{
using T = typename std::decay<ValueType>::type;
#ifndef ANY_IMPL_NO_RTTI
if (operand && operand->is_typed(typeid(T)))
#else
if (operand && operand->vtable == any::vtable_for_type<T>())
#endif
return operand->cast<ValueType>();
else
return nullptr;
}
/// If operand != nullptr && operand->type() == typeid(ValueType), a pointer to the object
/// contained by operand, otherwise nullptr.
template<typename ValueType>
inline ValueType* any_cast(any* operand) noexcept
{
using T = typename std::decay<ValueType>::type;
#ifndef ANY_IMPL_NO_RTTI
if (operand && operand->is_typed(typeid(T)))
#else
if (operand && operand->vtable == any::vtable_for_type<T>())
#endif
return operand->cast<ValueType>();
else
return nullptr;
}
inline void swap(any& lhs, any& rhs) noexcept
{
lhs.swap(rhs);
}
template <typename T, typename... Args>
any make_any(Args&&... args)
{
return any(in_place_type_t<T>{}, std::forward<Args>(args)...);
}
template <typename T, typename U, typename... Args>
any make_any(std::initializer_list<U> il, Args&&... args)
{
return any(in_place_type_t<T>{}, il, std::forward<Args>(args)...);
}
}
#endif