zeek/auxil/spicy/hilti/runtime/include/intrusive-ptr.h
Patrick Kelley 8fd444092b initial
2025-05-07 15:35:15 -04:00

285 lines
7.5 KiB
C++

// Copyright (c) 2020-now by the Zeek Project. See LICENSE for details.
#pragma once
#include <cstdint>
#include <type_traits>
#include <utility>
namespace hilti::rt {
namespace intrusive_ptr {
/**
* A tag class for the #IntrusivePtr constructor which means: adopt
* the reference from the caller.
*/
struct AdoptRef {};
/**
* A tag class for the #IntrusivePtr constructor which means: create a
* new reference to the object.
*/
struct NewRef {};
/** Base class for objects to be managed by #IntrusivePtr. */
class ManagedObject {
private:
template<typename T>
friend void Ref(const T*);
template<typename T>
friend void Unref(const T*);
mutable uint64_t _references = 1;
};
template<typename T>
inline void Ref(const T* m) {
if ( m )
++m->_references;
}
template<typename T>
inline void Unref(const T* m) {
if ( m && --m->_references == 0 )
delete m;
}
} // namespace intrusive_ptr
/**
* An intrusive, reference counting smart pointer implementation. Much like
* @c std::shared_ptr, this smart pointer models shared ownership of an object
* through a pointer. Several @c IntrusivePtr instances may point to the same
* object.
*
* The @c IntrusivePtr requires two free functions associated to @c T that must
* be available via argument-dependent lookup: @c Ref and @c Unref. The former
* increments the reference by one whenever a new owner participates in the
* lifetime of the shared object and the latter decrements the reference count
* by one. Once the reference count reaches zero, @c Unref also is responsible
* for destroying the shared object.
*
* The @c IntrusivePtr works with any type that offers the two free
* functions, but most notably can be used with classes derived from
* #intrusive_ptr::ManagedObject, which provides the functions.
*/
template<class T>
class IntrusivePtr {
public:
// -- member types
using pointer = T*;
using const_pointer = const T*;
using element_type = T;
using reference = T&;
using const_reference = const T&;
// -- constructors, destructors, and assignment operators
constexpr IntrusivePtr() noexcept = default;
constexpr IntrusivePtr(std::nullptr_t) noexcept : IntrusivePtr() {
// nop
}
/**
* Constructs a new intrusive pointer for managing the lifetime of the object
* pointed to by @c raw_ptr.
*
* This overload adopts the existing reference from the caller.
*
* @param raw_ptr Pointer to the shared object.
*/
constexpr IntrusivePtr(intrusive_ptr::AdoptRef, pointer raw_ptr) noexcept : ptr_(raw_ptr) {}
/**
* Constructs a new intrusive pointer for managing the lifetime of the object
* pointed to by @c raw_ptr.
*
* This overload adds a new reference.
*
* @param raw_ptr Pointer to the shared object.
*/
IntrusivePtr(intrusive_ptr::NewRef, pointer raw_ptr) noexcept : ptr_(raw_ptr) {
if ( ptr_ )
Ref(ptr_);
}
IntrusivePtr(IntrusivePtr&& other) noexcept : ptr_(other.release()) {
// nop
}
IntrusivePtr(const IntrusivePtr& other) noexcept : IntrusivePtr(intrusive_ptr::NewRef{}, other.get()) {}
template<class U, class = std::enable_if_t<std::is_convertible_v<U*, T*>>>
IntrusivePtr(IntrusivePtr<U> other) noexcept : ptr_(other.release()) {
// nop
}
~IntrusivePtr() {
if ( ptr_ )
Unref(ptr_);
}
void swap(IntrusivePtr& other) noexcept { std::swap(ptr_, other.ptr_); }
friend void swap(IntrusivePtr& a, IntrusivePtr& b) noexcept {
using std::swap;
swap(a.ptr_, b.ptr_);
}
/**
* Detaches an object from the automated lifetime management and sets this
* intrusive pointer to @c nullptr.
* @returns the raw pointer without modifying the reference count.
*/
pointer release() noexcept { return std::exchange(ptr_, nullptr); }
IntrusivePtr& operator=(IntrusivePtr other) noexcept {
swap(other);
return *this;
}
pointer get() const noexcept {
// Some versions of GCC diagnose a maybe uninitialized variable here.
// Since we always initialize the field this should not be possible.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Wunknown-warning-option"
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
return ptr_;
#pragma GCC diagnostic pop
}
pointer operator->() const noexcept { return ptr_; }
reference operator*() const noexcept { return *ptr_; }
bool operator!() const noexcept { return ! ptr_; }
explicit operator bool() const noexcept { return ptr_ != nullptr; }
private:
pointer ptr_ = nullptr;
};
/**
* Convenience function for creating a reference counted object and wrapping it
* into an intrusive pointers.
* @param args Arguments for constructing the shared object of type @c T.
* @returns an @c IntrusivePtr pointing to the new object.
* @note This function assumes that any @c T starts with a reference count of 1.
* @relates IntrusivePtr
*/
template<class T, class... Ts>
IntrusivePtr<T> make_intrusive(Ts&&... args) {
// Assumes that objects start with a reference count of 1!
return {intrusive_ptr::AdoptRef{}, new T(std::forward<Ts>(args)...)};
}
/**
* Casts an @c IntrusivePtr object to another by way of static_cast on
* the underlying pointer.
* @param p The pointer of type @c U to cast to another type, @c T.
* @return The pointer, as cast to type @c T.
*/
template<class T, class U>
IntrusivePtr<T> cast_intrusive(IntrusivePtr<U> p) noexcept {
return {intrusive_ptr::AdoptRef{}, static_cast<T*>(p.release())};
}
// -- comparison to nullptr ----------------------------------------------------
/**
* @relates IntrusivePtr
*/
template<class T>
bool operator==(const IntrusivePtr<T>& x, std::nullptr_t) {
return ! x;
}
/**
* @relates IntrusivePtr
*/
template<class T>
bool operator==(std::nullptr_t, const IntrusivePtr<T>& x) {
return ! x;
}
/**
* @relates IntrusivePtr
*/
template<class T>
bool operator!=(const IntrusivePtr<T>& x, std::nullptr_t) {
return static_cast<bool>(x);
}
/**
* @relates IntrusivePtr
*/
template<class T>
bool operator!=(std::nullptr_t, const IntrusivePtr<T>& x) {
return static_cast<bool>(x);
}
// -- comparison to raw pointer ------------------------------------------------
/**
* @relates IntrusivePtr
*/
template<class T>
bool operator==(const IntrusivePtr<T>& x, const T* y) {
return x.get() == y;
}
/**
* @relates IntrusivePtr
*/
template<class T>
bool operator==(const T* x, const IntrusivePtr<T>& y) {
return x == y.get();
}
/**
* @relates IntrusivePtr
*/
template<class T>
bool operator!=(const IntrusivePtr<T>& x, const T* y) {
return x.get() != y;
}
/**
* @relates IntrusivePtr
*/
template<class T>
bool operator!=(const T* x, const IntrusivePtr<T>& y) {
return x != y.get();
}
// -- comparison to intrusive pointer ------------------------------------------
// Using trailing return type and decltype() here removes this function from
// overload resolution if the two pointers types are not comparable (SFINAE).
/**
* @relates IntrusivePtr
*/
template<class T, class U>
auto operator==(const IntrusivePtr<T>& x, const IntrusivePtr<U>& y) -> decltype(x.get() == y.get()) {
return x.get() == y.get();
}
/**
* @relates IntrusivePtr
*/
template<class T, class U>
auto operator!=(const IntrusivePtr<T>& x, const IntrusivePtr<U>& y) -> decltype(x.get() != y.get()) {
return x.get() != y.get();
}
} // namespace hilti::rt