zeek/auxil/vcpkg/ports/shogun/eigen-3.4.patch
Patrick Kelley 8fd444092b initial
2025-05-07 15:35:15 -04:00

90 lines
3.7 KiB
Diff

diff --git a/src/shogun/CMakeLists.txt b/src/shogun/CMakeLists.txt
index 31a0d2c7b..e700bd7c7 100644
--- a/src/shogun/CMakeLists.txt
+++ b/src/shogun/CMakeLists.txt
@@ -307,7 +307,7 @@ IF(NOT EIGEN3_FOUND)
)
ELSE()
# https://github.com/shogun-toolbox/shogun/issues/4870
- IF(${EIGEN3_VERSION_STRING} VERSION_GREATER 3.3.9)
+ IF(0)
MESSAGE(FATAL_ERROR "The system Eigen3 version ${EIGEN3_VERSION_STRING} isn't supported!")
ENDIF()
SHOGUN_INCLUDE_DIRS(SCOPE PUBLIC SYSTEM ${EIGEN3_INCLUDE_DIR})
diff --git a/src/shogun/machine/gp/MultiLaplaceInferenceMethod.cpp b/src/shogun/machine/gp/MultiLaplaceInferenceMethod.cpp
index a1677177e..0c9ca8f78 100644
--- a/src/shogun/machine/gp/MultiLaplaceInferenceMethod.cpp
+++ b/src/shogun/machine/gp/MultiLaplaceInferenceMethod.cpp
@@ -87,10 +87,10 @@ public:
float64_t result=0;
for(index_t bl=0; bl<C; bl++)
{
- eigen_f.block(bl * n, 0, n, 1) =
- K * alpha->block(bl * n, 0, n, 1) * std::exp(log_scale * 2.0);
- result+=alpha->block(bl*n,0,n,1).dot(eigen_f.block(bl*n,0,n,1))/2.0;
- eigen_f.block(bl*n,0,n,1)+=eigen_m;
+ eigen_f.segment(bl * n, n) =
+ K * alpha->segment(bl * n, n) * std::exp(log_scale * 2.0);
+ result+=alpha->segment(bl*n,n).dot(eigen_f.segment(bl*n,n))/2.0;
+ eigen_f.segment(bl*n,n)+=eigen_m;
}
// get first and second derivatives of log likelihood
@@ -278,9 +278,9 @@ void MultiLaplaceInferenceMethod::update_alpha()
{
Map<VectorXd> alpha(m_alpha.vector, m_alpha.vlen);
for(index_t bl=0; bl<C; bl++)
- eigen_mu.block(bl * n, 0, n, 1) = eigen_ktrtr *
+ eigen_mu.segment(bl * n, n) = eigen_ktrtr *
std::exp(m_log_scale * 2.0) *
- alpha.block(bl * n, 0, n, 1);
+ alpha.segment(bl * n, n);
//alpha'*(f-m)/2.0
Psi_New=alpha.dot(eigen_mu)/2.0;
@@ -324,7 +324,7 @@ void MultiLaplaceInferenceMethod::update_alpha()
for(index_t bl=0; bl<C; bl++)
{
- VectorXd eigen_sD=eigen_dpi.block(bl*n,0,n,1).cwiseSqrt();
+ VectorXd eigen_sD=eigen_dpi.segment(bl*n,n).cwiseSqrt();
LLT<MatrixXd> chol_tmp(
(eigen_sD * eigen_sD.transpose())
.cwiseProduct(eigen_ktrtr * std::exp(m_log_scale * 2.0)) +
@@ -351,14 +351,14 @@ void MultiLaplaceInferenceMethod::update_alpha()
VectorXd tmp2=m_tmp.array().rowwise().sum();
for(index_t bl=0; bl<C; bl++)
- eigen_b.block(bl*n,0,n,1)+=eigen_dpi.block(bl*n,0,n,1).cwiseProduct(eigen_mu.block(bl*n,0,n,1)-eigen_mean_bl-tmp2);
+ eigen_b.segment(bl*n,n)+=eigen_dpi.segment(bl*n,n).cwiseProduct(eigen_mu.segment(bl*n,n)-eigen_mean_bl-tmp2);
Map<VectorXd> &eigen_c=eigen_W;
for(index_t bl=0; bl<C; bl++)
- eigen_c.block(bl * n, 0, n, 1) =
+ eigen_c.segment(bl * n, n) =
eigen_E.block(0, bl * n, n, n) *
(eigen_ktrtr * std::exp(m_log_scale * 2.0) *
- eigen_b.block(bl * n, 0, n, 1));
+ eigen_b.segment(bl * n, n));
Map<MatrixXd> c_tmp(eigen_c.data(),n,C);
@@ -422,7 +422,7 @@ float64_t MultiLaplaceInferenceMethod::get_derivative_helper(SGMatrix<float64_t>
{
result+=((eigen_E.block(0,bl*n,n,n)-eigen_U.block(0,bl*n,n,n).transpose()*eigen_U.block(0,bl*n,n,n)).array()
*eigen_dK.array()).sum();
- result-=(eigen_dK*eigen_alpha.block(bl*n,0,n,1)).dot(eigen_alpha.block(bl*n,0,n,1));
+ result-=(eigen_dK*eigen_alpha.segment(bl*n,n)).dot(eigen_alpha.segment(bl*n,n));
}
return result/2.0;
@@ -504,7 +504,7 @@ SGVector<float64_t> MultiLaplaceInferenceMethod::get_derivative_wrt_mean(
result[i]=0;
//currently only compute the explicit term
for(index_t bl=0; bl<C; bl++)
- result[i]-=eigen_alpha.block(bl*n,0,n,1).dot(eigen_dmu);
+ result[i]-=eigen_alpha.segment(bl*n,n).dot(eigen_dmu);
}
return result;